Аннотация:
В работе рассматривается задача приближенного построения множеств достижимости линейной управляемой системы, когда управляющее воздействие стеснено одновременно геометрическим и несколькими интегральными ограничениями. Предлагается вариант перехода от непрерывной к дискретной системе путем равномерного разбиения временного отрезка и замене управлений на шаге разбиения их средними значениями. Доказана сходимость множества достижимости аппроксимирующей системы к множеству достижимости исходной системы в хаусдорфовой метрике при стремлении шага дискретизации к нулю, получена оценка скорости сходимости. Предложен алгоритм построения границы множеств достижимости, основанный на решении семейства задач конического программирования. Проведено численное моделирование.