Аннотация:
Рассматривается задача о построении наиболее эффективного (тончайшего) покрытия выпуклого множества на плоскости набором однотипных элементов. В качестве меры удаленности двух точек множества выступает наименьшее время, за которое можно попасть из одной точки в другую, и границей каждого покрывающего круга является изохрона. Подобные задачи возникают в приложениях, в частности, в системах гидролокации и подводного наблюдения. Для решения задач покрытия такими кругами и шарами ранее нами были предложены алгоритмы, основанные как на вариационных принципах, так и на основе геометрических методов. Целью настоящей статьи является построение покрытий в случае, когда характеристики среды изменяются во времени. Для решения указанной задачи предложен вычислительный алгоритм, основанный на теории волновых фронтов. Доказано утверждение о свойствах метода. Выполнены иллюстрирующие расчеты.
Ключевые слова:оптимальное покрытие, волновой фронт, динамическая метрика, чебышёвский центр.