Аннотация:
В работе изучено влияние преобразований признакового пространства на свойства процесса многократного машинного обучения. Исследованы условия, при которых прогноз асимптотического поведения системы во времени, полученный в исходном пространстве, может быть перенесен на аналогичную систему в преобразованном пространстве. Полученные результаты указывают на возможность использования более простых систем в пространствах меньшей размерности для изучения процессов в сложных системах.
Ключевые слова:
машинное обучение, многократное машинное обучение, петля обратной связи, динамические системы.