Аннотация:
Пусть $E$ – эллиптическая кривая над $\mathbf Q$, допускающая параметризацию Вейля $\gamma\colon X_N\to E$, $L(E,\mathbf Q,1)\ne0$. Пусть $K$ – мнимо-квадратичное расширение $\mathbf Q$ с дискриминантом $\Delta\equiv\textrm{квадрат}\pmod{4N}$, $y_K\in E(K)$ – точка Хеегнера. Показано, что если $y_K$ имеет бесконечный порядок ($K$ не должно принадлежать конечному множеству полей, описываемому в терминах $\gamma$), то группа Морделла–Вейля $E(\mathbf Q)$ и группа Шафаревича–Тейта $Ш(E,\mathbf Q)$ кривой $E$ (над $\mathbf Q$) конечны. Например, $Ш(X_{17},\mathbf Q)$ конечна. В частности, $E(\mathbf Q)$ и $Ш(E,\mathbf Q)$ конечны, если $(\Delta,2N)=1$, $L_f'(E,K,1)\ne0$, где $f=\infty$ или $f$ – простое рациональное число такое, что $\bigl(\frac fK\bigr)=1$, $(f,Na_f)=1$, где $a_f$ – коэффициент при $f^{-s}$$L$-ряда $E$ над $\mathbf Q$. Указано в терминах $E$, $K$ и $y_K$ число, аннулирующее $E(\mathbf Q)$ и $Ш(E,\mathbf Q)$.
Библиография: 11 названий.