Аннотация:
На пространстве симметричных матриц второго порядка рассмотрена гиперболическая система законов сохранения, содержащая в правой части оператор функционального исчисления $\tilde f(U)$, порожденный в общем случае лишь непрерывной скалярной функцией $f(u)$. Для таких систем определено и описано множество сингулярных энтропий, введено понятие обобщенного энтропийного решения (о.э.р.) соответствующей задачи Коши, исследованы свойства о.э.р. Выделен класс сильных о.э.р., в котором
рассматриваемая задача Коши однозначно разрешима. Приведено условие на начальные данные, при котором о.э.р. всегда является сильным и, тем самым, единственно. При этом условии установлена сходимость метода “исчезающей вязкости”. Примером показано, что в общем случае о.э.р. может быть неединственным.
Библиография: 17 наименований.