RUS  ENG
Полная версия
ЖУРНАЛЫ // Известия Российской академии наук. Серия математическая // Архив

Изв. РАН. Сер. матем., 1999, том 63, выпуск 4, страницы 19–36 (Mi im250)

О вложении решеток в некоторые решетки многообразий групп

М. И. Анохин

Московский государственный университет им. М. В. Ломоносова

Аннотация: Для многообразия групп $\mathfrak V$ и его подмногообразия $\mathfrak U$ пусть $\langle\mathfrak U,\mathfrak V\rangle$ обозначает полную решетку всех многообразий групп $\mathfrak X$ таких, что $\mathfrak U\subseteq \mathfrak X\subseteq \mathfrak V$. Пусть также $\Lambda=\mathrm C\prod_{n=1}^\infty\Lambda_n$, где $\Lambda_n$ – решетка всех подпространств $n$-мерного линейного пространства над полем из двух элементов, а $\mathrm C\prod$ – операция декартова произведения. Непустое подмножество $K$ полной решетки $M$ называется полной подрешеткой $M$, если $\sup_MX\in K$ и $\inf_MX\in K$ для любого непустого подмножества $X\subseteq K$.
Доказано, что $\Lambda$ изоморфна полной подрешетке $\langle\mathfrak A_2^4, \mathfrak A_2^5\rangle$. С другой стороны, легко видеть, что $\langle\mathfrak U,\mathfrak A_2\mathfrak U\rangle$ изоморфна полной подрешетке $\Lambda$ для любого локально конечного многообразия групп $\mathfrak U$. Из этого следуют некоторые критерии изоморфизма (полной) подрешетке решетки $\langle\mathfrak U,\mathfrak A_2\mathfrak U\rangle$ для некоторого локально конечного многообразия групп $\mathfrak U$. Кроме того, показано, что существует подрешетка $\langle\mathfrak A_2^4,\mathfrak A_2^5\rangle$, порожденная четырьмя элементами и содержащая бесконечную цепь.
Библиография: 10 наименований.

MSC: 20E10, 20F16, 08B15, 20F05

Поступило в редакцию: 09.06.1997

DOI: 10.4213/im250


 Англоязычная версия: Izvestiya: Mathematics, 1999, 63:4, 649–665

Реферативные базы данных:


© МИАН, 2024