RUS  ENG
Полная версия
ЖУРНАЛЫ // Известия Российской академии наук. Серия математическая // Архив

Изв. РАН. Сер. матем., 2013, том 77, выпуск 3, страницы 29–54 (Mi im8025)

Эта публикация цитируется в 16 статьях

Ice cream and orbifold Riemann–Roch

A. Buckleya, M. Reidb, S. Zhouc

a Department of Mathematics, University of Ljubljana, Slovenia
b Mathematics Institute, University of Warwick, England
c Høgskolen i Telemark, Notodden, Norway

Аннотация: We give an orbifold Riemann–Roch formula in closed form for the Hilbert series of a quasismooth polarized $n$-fold $(X,D)$, under the assumption that $X$ is projectively Gorenstein with only isolated orbifold points. Our formula is a sum of parts each of which is integral and Gorenstein symmetric of the same canonical weight; the orbifold parts are called ice cream functions. This form of the Hilbert series is particularly useful for computer algebra, and we illustrate it on examples of $\mathrm{K3}$ surfaces and Calabi–Yau 3-folds. These results apply also with higher dimensional orbifold strata (see [1] and [2]), although the precise statements are considerably trickier. We expect to return to this in future publications.
Bibliography: 22 titles.

Ключевые слова: orbifold, orbifold Riemann–Roch, Dedekind sum, Hilbert series, weighted projective varieties.

УДК: 512.7

MSC: 14Q15; 13P20

Поступило в редакцию: 02.07.2012
Исправленный вариант: 22.08.2012

Язык публикации: английский

DOI: 10.4213/im8025


 Англоязычная версия: Izvestiya: Mathematics, 2013, 77:3, 461–486

Реферативные базы данных:


© МИАН, 2024