Аннотация:
Мы доказываем кратную цветную теорему Тверберга и сбалансированную цветную теорему Тверберга, пользуясь различными методами и приемами. Доказательство первой теоремы использует в качестве конфигурационнго пространства шахматный комплекс с кратностями и теорию Эйленберга–Красносельского о степенях эквивариантных отображений для несвободных действий групп. Доказательство второй теоремы опирается на высокую связность конфигурационного пространства, установленную с помощью дискретной теории Морса.
Библиография: 35 наименований.