Аннотация:
В работе рассматриваются нелокальные функционалы энергии, заданные на множестве вероятностных мер на плоскости как сумма свертки, описывающей взаимодействие, и квадратичного ограничения. Ядро взаимодействия имеет вид $-\log|z|+\alpha x^2/|z|^2$, $z=x+iy$, где $-1<\alpha<1$. Оно анизотропно, если не считать кулоновского случая $\alpha=0$. Дается короткое компактное доказательство известного и удивительного утверждения о том, что единственным минимизатором такого функционала энергии является нормированная характеристическая функция области, ограниченной эллипсом с горизонтальной полуосью $\sqrt{1-\alpha}$ и вертикальной полуосью $\sqrt{1+\alpha}$. При $\alpha \to 1^-$ обнаружено, что единственным минимизатором соответствующего функционала энергии является полукруговое распределение на вертикальной оси (этот результат был ранее получен некоторыми из авторов данной статьи в связи с вопросом о взаимодействии дислокаций). В начале работы дается простейшее возможное изложение хорошо известных основных фактов данной теории, чтобы сделать доказательства доступными для читателей, незнакомых с предметом.
Библиография: 13 наименований.
Ключевые слова:нелокальное взаимодействие, теория потенциала, принцип максимума, формула Сохоцкого–Племеля.