Аннотация:
Определена двухиндексная шкала $\mathcal Q_{q,p}$, $n-1<q\leq p<\infty$, гомеоморфизмов пространственных областей в $\mathbb R^n$, геометрическое описание которых обусловленно контролем поведения $q$-емкости конденсаторов в образе через весовую $p$-емкость конденсаторов в прообразе. Получено эквивалентное функциональное и аналитическое описание классов $\mathcal Q_{q,p}$, основанное на свойствах оператора композиции весового пространства Соболева в невесовое, индуцированного отображениями, обратными к отображениям класса $\mathcal Q_{q,p}$.
При $q=p=n$ класс отображений $\mathcal Q_{n,n}$ совпадает с совокупностью так называемых $Q$-гомеоморфизмов, активно исследуемых в течение последних 25 лет.
Библиография: 58 наименований.
Ключевые слова:квазиконформный анализ, пространство Соболева, оператор композиции, емкость и модуль конденсатора.