RUS  ENG
Полная версия
ЖУРНАЛЫ // Известия Российской академии наук. Серия математическая // Архив

Изв. РАН. Сер. матем., 2022, том 86, выпуск 6, страницы 143–160 (Mi im9175)

Об одном классе квазилинейных уравнений эллиптического типа с разрывными нелинейностями

В. Н. Павленкоa, Д. К. Потаповb

a Челябинский государственный университет
b Санкт-Петербургский государственный университет

Аннотация: В ограниченной области $\Omega\subset \mathbb{R}^n$ исследуется класс квазилинейных граничных задач эллиптического типа с параметром и разрывной нелинейностью. Рассматриваемый класс задач включает задачу Х. Дж. Купера о нагреве проводника в однородном электрическом поле. Топологическим методом устанавливается существование континуума обобщенных положительных решений из соболевского пространства $W_p^2(\Omega)$\enskip ($p>n$), соединяющего $(0,0)$ с $\infty$, в пространстве $\mathbb R\times C^{1,\alpha}(\overline\Omega)$, $\alpha\in (0,(p-n)/p)$. Приводится достаточное условие полуправильности обобщенных решений изучаемой задачи. По сравнению с работами Х. Дж. Купера и К.-Ч. Чанга ослаблены ограничения на разрывную нелинейность.
Библиография: 26 наименований.

Ключевые слова: квазилинейное уравнение эллиптического типа, параметр, разрывная нелинейность, континуум положительных решений, полуправильное решение, топологический метод.

УДК: 517.956.25

PACS: N/A

MSC: Primary 35J62; Secondary 35R05

Поступило в редакцию: 18.04.2021
Исправленный вариант: 07.02.2022

DOI: 10.4213/im9175


 Англоязычная версия: Izvestiya: Mathematics, 2022, 86:6, 1162–1178

Реферативные базы данных:


© МИАН, 2024