Аннотация:
В ограниченной области $\Omega\subset \mathbb{R}^n$ исследуется класс квазилинейных граничных задач эллиптического типа с параметром и разрывной нелинейностью. Рассматриваемый класс задач включает задачу Х. Дж. Купера о нагреве проводника в однородном электрическом поле. Топологическим методом устанавливается существование континуума обобщенных положительных решений из соболевского пространства $W_p^2(\Omega)$\enskip ($p>n$), соединяющего $(0,0)$ с $\infty$, в пространстве $\mathbb R\times C^{1,\alpha}(\overline\Omega)$, $\alpha\in (0,(p-n)/p)$. Приводится достаточное условие полуправильности обобщенных решений изучаемой задачи. По сравнению с работами Х. Дж. Купера и К.-Ч. Чанга ослаблены ограничения на разрывную нелинейность.
Библиография: 26 наименований.