Изв. РАН. Сер. матем.,
2024 , том 88, выпуск 3, страницы 192–202
(Mi im9485)
The length of the cut locus on convex surfaces
Liping Yuan abc ,
T. Zamfirescu abde a School of Mathematical Sciences, Hebei Normal University, P. R. China
b Hebei International Joint Research Center for Mathematics and Interdisciplinary Science, P. R. China
c Hebei Key Laboratory of Computational Mathematics and Applications, P. R. China
d Fachbereich Mathematik, Technischen Universität Dortmund, Dortmund, Germany
e Romanian Academy, Bucharest, Romania
Аннотация:
In this paper, we prove the conjecture stating that, on any closed convex surface, the cut locus of a finite set
$M$ with more than two points has length at least half the diameter of the surface.
Ключевые слова:
closed convex surface, cut locus, finite set, diameter.
УДК:
515.124
MSC: 53C45 ,
53C22 Поступило в редакцию: 10.04.2023
Язык публикации: английский
DOI:
10.4213/im9485
© , 2024