Local analog of the Deligne–Riemann–Roch isomorphism for line bundles in relative dimension 1
			
			D. V. Osipov		 Steklov Mathematical Institute of Russian Academy of Sciences, Moscow, Russia
					
			Аннотация:
			We prove a local analog of the Deligne–Riemann–Roch isomorphism in the case of line bundles and relative dimension 
$1$. This local analog consists in computation of the class of 
$12$th power of the determinant central extension of a group ind-scheme 
$\mathcal G$ by the multiplicative group scheme over 
$\mathbb Q$ via the product of 
$2$-cocyles in the second cohomology group. These 
$2$-cocycles are the compositions of the Contou-Carrère symbol with the 
$\cup$-product of 
$1$-cocycles. The group ind-scheme 
$\mathcal{G}$ represents the functor which assigns to every commutative ring 
$A$ the group that is the semidirect product of the group 
$A((t))^*$ of invertible elements of 
$A((t))$ and the group of continuous 
$A$-automorphisms of 
$A$-algebra 
$A((t))$. The determinant central extension naturally acts on the determinant line bundle on the moduli stack of geometric data (proper quintets). A proper quintet is a collection of a proper family of curves over 
$\operatorname{Spec} A$, a line bundle on this family, a section of this family, a relative formal parameter at the section, a formal trivialization of the bundle at the section that satisfy further conditions.
				
			
Ключевые слова:
			Deligne–Riemann–Roch isomorphism, determinant central extension, 
$\cup$-products of 
$1$-cocycles, Contou-Carrère symbol, determinant linear bundle.	
			
УДК:
			512.732.6+
512.747+
512.721	
			MSC: 14B10, 
14D15, 
14C40L	Поступило в редакцию: 15.08.2023
Исправленный вариант: 28.03.2024	
			
Язык публикации: английский	
			
DOI:
			10.4213/im9532