Аннотация:
Рассматривается класс нелинейных интегральных уравнений с монотонным оператором Немыцкого на положительной полупрямой. Указанный класс интегральных уравнений встречается во многих направлениях современного естествознания. В частности, такие уравнения при различных ограничениях на нелинейность и ядро возникают в динамической теории $p$-адических струн для скалярного поля тахионов, в кинетической теории газов и плазмы в рамках обычной и модифицированной нелинейных моделей Бхатнагара–Гросса–Крука для кинетического уравнения Больцмана. Уравнения подобного характера встречаются также в теории нелинейного переноса излучения в неоднородных средах и в математической теории распространения эпидемических заболеваний в рамках модифицированной модели Дикмана–Капера. Доказывается конструктивная теорема существования ограниченного положительного и непрерывного решения. Получается равномерная оценка разности между предыдущей и последующей
итерациями, притом эти последовательные приближения равномерно сходятся к ограниченному непрерывному решению рассматриваемого уравнения. Исследуется асимптотическое поведение построенного решения на бесконечности. В частности, доказывается, что решение на бесконечности имеет положительный предел, который однозначно определяется из некоторого характеристического уравнения. Доказывается также, что разность между пределом и решением является суммируемой функцией на положительной полуоси. Используя некоторые геометрические оценки для выпуклых и вогнутых функций, а также опираясь на доказанную теорему об интегральной асимптотике, доказывается единственность решения в определенном подклассе неотрицательных нетривиальных непрерывных и ограниченных функций. С помощью полученных результатов удается также исследовать специальный класс нелинейных интегральных уравнений урысоновского типа на положительной полупрямой. В частности, доказывается существование положительного и ограниченного решения данного класса уравнений, а также изучаются некоторые качественные свойства построенного решения. Приводятся конкретные примеры прикладного характера соответствующего ядра и нелинейности для иллюстрации важности полученных результатов.
Библиография: 52 наименования.