$H^p$ spaces of separately $(\alpha, \beta)$-harmonic functions
in the unit polydisc
M. Arsenovića,
J. Gajićb,
M. Mateljevića a Department of Mathematics, University of Belgrade, Belgrade, Serbia
b Faculty of Natural Sciences and Mathematics, University of Banja Luka, Banja Luka, Bosnia and Herzegovina
Аннотация:
We prove existence and uniqueness of a solution of the Dirichlet problem for separately
$(\alpha, \beta)$-harmonic functions on
$\mathbb D^n$ with boundary data in
$C(\mathbb T^n)$ using
$(\alpha, \beta)$-Poisson kernel
$P_{\alpha, \beta} (z, \zeta)$. A characterization by hypergeometric functions of separately
$(\alpha, \beta)$-harmonic functions which are also
$m$-homogeneous is given, it is used to obtain series expansion of separately
$(\alpha, \beta)$-harmonic functions. Basic
$H^p$ theory of such functions is developed: integral representations by measures and
$L^p$ functions on
$\mathbb T^n$, norm and weak
$^\ast$ convergence at the distinguished boundary
$\mathbb T^n$. Weak
$(1,1)$-type estimate for a restricted non-tangential maximal function
$M_{A, B}^{\mathrm{NT}}$ is derived. We show that slice functions
$u(z_1, \dots, z_k, \zeta_{k+1}, \dots, \zeta_n)$, where some of the variables are fixed, belong in the appropriate space of separately
$(\alpha', \beta')$-harmonic functions of
$k$ variables. We prove a Fatou type theorem on a. e. existence of restricted non-tangential limits for these functions and a corresponding result for unrestricted limit at a point in
$\mathbb T^n$. Our results extend earlier results for
$(\alpha, \beta)$-harmonic functions in the disc and for
$n$-harmonic functions in
$\mathbb D^n$.
Ключевые слова:
separately
$(\alpha, \beta)$-harmonic functions,
$H^p$ spaces, non-tangential limits, polydisc.
УДК:
517.53
MSC: 32A35,
42B30,
42B25,
32A05,
35J48 Поступило в редакцию: 12.05.2024
Исправленный вариант: 18.03.2025
Язык публикации: английский
DOI:
10.4213/im9603