Аннотация:
Систематически излагаются основные факты геометрии пространств постоянной кривизны, в первую очередь пространства Лобачевского. При этом пространства постоянной кривизны определяются как однородные пространства максимальной подвижности. Такой аксиоматический подход позволяет свободно переходить от одной модели пространств постоянной кривизны к другой или, вообще, обходиться без модели, а также быстро ввести в действие аналитический аппарат. Изложение в большей своей части использует только сведения, не выходящие за рамки первых двух курсов математических факультетов университетов. В последней главе пространства постоянной кривизны рассматриваются как римановы многообразия. Здесь используется понятие кривизны и другие сведения из дифференциальной геометрии.
Библ. 47.