Аннотация:
Обзор посвящен изложению основных понятий и фактов о когомологиях алгебраических многообразий и применению их к геометрическим задачам. Состоит он из четырех глав.
В гл. 1 приводятся необходимые понятия гомологической алгебры: комплексы, спектральные последовательности, пучки и их когомологии.
В гл. 2 рассказывается о когомологиях когерентных пучков: теоремы конечности и Римана–Роха, двойственность, когомологии де Рама.
Гл. 3 имеет дело с комплексными многообразиями и классической топологией. Именно здесь зародились те понятия и результаты, которые были образцом при обобщении на абстрактные алгебраические многообразия. Мы лишь бегло касаемся теории Ходжа.
В гл. 4 речь идет об этальной топологии, с помощью которой удалось перенести на абстрактный случай такие понятия, как числа Бетти, теорему Лефшеца о неподвижных точках и т. п. Начинается она с формулировки гипотез Вейля, давших стимул к поиску «абстрактных когомологий»; заканчивается доказательством этих гипотез П. Делинем.
Библ. 79.