RUS  ENG
Полная версия
ЖУРНАЛЫ // Итоги науки и техники. Современная математика и ее приложения. Тематические обзоры // Архив

Итоги науки и техн. Соврем. мат. и ее прил. Темат. обз., 2022, том 216, страницы 50–56 (Mi into1080)

Эллиптические задачи в областях с вырожденными особенностями

В. Б. Васильев, Ш. Кутаиба

Белгородский государственный национальный исследовательский университет

Аннотация: Рассматривается модельное эллиптическое псевдодифференциальное уравнение в пространствах Соболева"– Слободецкого во внешней области угла на плоскости. С помощью волновой факторизации в случае единственного решения исследуется ситуация, когда раствор угла стремится к нулю. Показано, что этот предел существует, только если правая часть удовлетворяет некоторому дополнительному условию. Это условие получено с использованием свойств сингулярных интегральных операторов.

Ключевые слова: псевдодифференциальное уравнение, символ, волновая факторизация, плоский угол, сингулярный интеграл, предельное решение, граничное условие.

УДК: 517.929

MSC: 35S15, 42B37, 45E05

DOI: 10.36535/0233-6723-2022-216-50-56



© МИАН, 2024