RUS  ENG
Полная версия
ЖУРНАЛЫ // Итоги науки и техники. Современная математика и ее приложения. Тематические обзоры // Архив

Итоги науки и техн. Соврем. мат. и ее прил. Темат. обз., 2025, том 241, страницы 18–29 (Mi into1347)

Позиционный принцип минимума в задачах оптимального управления с терминальными ограничениями и его расширения

В. А. Дыхтаab

a Институт динамики систем и теории управления имени В.М. Матросова Сибирского отделения Российской академии наук, г. Иркутск
b Иркутский государственный университет

Аннотация: Необходимое условие глобальной оптимальности — позиционный принцип минимума (F-ПМ), установленный для задач со свободным правым концом траекторий, обобщается на гладкую задачу с терминальными ограничениями типа равенства. Для этого применяется абстрактный метод опорных мажорант, который конкретизируется для задачи управления на уровне модифицированной функции Лагранжа с квадратичным штрафом. Но соответствующая безусловная экстремальная задача не требует решения: если исследуемый процесс оптимален в исходной задаче управления, то спуск с него в безусловной задаче на допустимую траекторию с помощью F-ПМ невозможен (при любом выборе множителя Лагранжа и штрафного параметра). Нарушение этого необходимого условия сопровождается предъявлением улучшающего процесса (который может оказаться скользящим режимом). Конструктивную основу F-ПМ составляет метод спуска с управлениями в форме обратной связи. Применение этого метода естественно и в известных методах Кротова и Понтрягина, в которых минимизируются соответственно модифицированные лагранжианы Кротова и бипозиционные лагранжианы. В результате такого расширения области применения метода позиционного спуска получены позиционные версии методов Кротова и Понтрягина, которые значительно эффективнее традиционных.

Ключевые слова: необходимые и достаточные условия, позиционные управления, экстремали, функции Кротова

УДК: 517.977.5

MSC: 49L99, 49K15

DOI: 10.36535/2782-4438-2025-241-18-29



© МИАН, 2025