Аннотация:
Для численного решения расчета задачи Коши со множественными сингулярностями решения рассмотрено два подхода. Во-первых, найдены те схемы, которые позволяют вести сквозной расчет решения за полюс. Такими схемами оказались чисто неявные схемы. Однако этот способ обеспечивает лишь точность первого порядка. Во-вторых, предложен метод инверсной функции. В случае полюсов первого порядка он позволяет продолжать решение за полюса, определяя само решение и положение полюсов с хорошей точностью. При этом можно использовать традиционные явные и неявные схемы, например, явные схемы Рунге-Кутты. Дан пример численного расчета задачи со многими полюсами. Предложенный метод полезен для написания программ вычисления специальных функций.
Ключевые слова:задача Коши, сингулярности, продолжение за полюс.