Аннотация:
Представлены обоснование и математическая модель задачи принятия оптимальных решений при распределении независимых приоритетов между двумя конкурирующими структурами, взаимодействующими в единой системе. Исследована модель квазилинейного типа с независимыми приоритетами. Приведены условия существования точек глобального максимума целевой функции арбитра и описание этих точек. Рассмотрены специфические ситуации, когда достаточное условие наличия экстремума не выполняется или выполняется только для одного из приоритетов. Приведен пример для случая постоянных приоритетов.