Аннотация:
Выведено дифференциальное уравнение, описывающее свободные длинноволновые колебания низкоразмерной упругой изотропной полосы-балки с учетом эффектов на свободных поверхностях. Граничные условия на внешних поверхностях формулируются в рамках теории упругости Гуртина – Мурдоха, которая учитывает поверхностные инерцию и касательные напряжения, включая остаточные. Вводятся дополнительные геометрические размеры, ассоциированные с лицевыми поверхностями, которые предполагаются малыми по сравнению с основным геометрическим размером — длиной волны. В качестве основного малого параметра рассматривается отношение толщины ультратонкой полосы к длине волны изгибных колебаний. Методом асимптотического интегрирования двухмерных уравнений теории упругости по толщине полосы-балки в явном виде получены соотношения для перемещений и напряжений в объеме полосы. Основным результатом работы является дифференциальное уравнение низкочастотных колебаний балки, которое учитывает поверхностные эффекты и обобщает хорошо известные уравнения теории балок. Показано, что наличие поверхностных напряжений приводит к увеличению собственных частот из нижнего спектра, в то время как учет поверхностной инерции, равно как и поперечных сдвигов в объеме, влечет снижение частот.
Ключевые слова:ультратонкая полоса-балка, поверхностная упругость, длинноволновая асимптотика, собственные частоты.
УДК:
534/539
Поступила в редакцию: 06.12.2023 Принята в печать: 28.12.2023