Аннотация:
Рассмотрены аппроксимативные свойства смешанных рядов по полиномам Лагерра на классах гладких функций, заданных на полуоси $[0,\infty)$. Для оценки отклонения гладкой функции от ее частичных сумм смешанного ряда по полиномам Лагерра получено неравенство, аналогичное неравенству Лебега для тригонометрических сумм Фурье. Получены оценки для соответствующей функции типа функции Лебега частичных сумм смешанного ряда по полиномам Лагерра.