Аннотация:
Рассматривается конечномерная задача о минимизации отношения радиуса описанного шара заданного выпуклого компакта (в произвольной норме) к радиусу вписанного шара за счет выбора единого центра этих шаров. Предлагается подход к построению численного метода её решения. На каждом шаге итерационного процесса требуется решать задачу выпуклого программирования, целевая функция которой является разностью радиуса описанного шара и, с некоторым варьируемым положительным множителем, радиуса вписанного шара. Показано, что эта вспомогательная задача, в случае, когда сам выпуклый компакт, а также шар используемой нормы являются многогранниками, сводится к задаче линейного программирования.