Аннотация:
В статье рассматривается краевая задача второго рода, для уравнений равновесия “в смешанной форме”, определяющая неклассическую математическую модель для шарнирно закрепленной изотропной и однородной пластины в рамках обобщенных гипотез Тимошенко с учетом начальных неправильностей. Для указанной задачи впервые доказывается существование обобщенного решения и слабая компактность множества приближенных решений, получаемого с помощью метода Бубнова–Галеркина по схеме В. З. Власова. На базе функциональных пространств, в которых рассматривается существование обобщенного решения и исследуется сходимость метода Бубнова–Галеркина, определяется конфигурационное пространство соответствующее поставленной краевой задаче.
Ключевые слова:нелинейные системы уравнений с частными производными, неклассическая теория оболочек.