Аннотация:
В статье рассматривается задача Коши для нелинейной системы ОДУ. Эта задача сводится к вариационной задаче минимизации некоторого функционала на всём пространстве. Для данного функционала выписываются необходимые условия минимума. На основании этих условий описываются метод наискорейшего спуска и метод сопряжённых направлений для рассматриваемой задачи. Приводятся численные примеры реализации этих методов. Дополнительно исследуется задача Коши с системой, не разрешённой относительно производных.
Ключевые слова:вариация, задача Коши, квадратичный функционал, градиент Гато, метод наискорейшего спуска, метод сопряжённых направлений.