Аннотация:
Статья посвящена проблеме построения полных систем неприводимых объективных тензоров деформации и экстрадеформации сложных (в частности, микрополярных) континуумов. Континуум предполагается сложным, т. е. изменения его пространственных конфигураций сопряжены с возникновением и развитием экстрадеформаций. Математическая размерность континуума считается произвольной. Предполагается, что он может быть вложен во внешнее плоское пространство, возможно, большего числа измерений. Указанная проблема решается в рамках и методами физической теории поля в сочетании с теорией алгебраических инвариантов группы собственно ортогональных преобразований конечных систем контравариантных векторов в плоском пространстве с заданным числом измерений. Тензоры деформации конструируются как неприводимые алгебраические инварианты, нечувствительные к поворотам координатного репера внешнего пространства, некоторой системы контравариантных векторов, с помощью которых задается плотность интеграла действия. С алгебраической точки зрения решение ограничивается системами рациональных или целых рациональных инвариантов. Исследуется полнота полученных систем инвариантов и получены сизигии, связывающие инварианты с помощью целых рациональных соотношений. Рассматривается проблема построения объективных тензоров деформации микрополярного континуума из элементов полярных разложений градиентов деформации и экстрадеформации.