Аннотация:
В работе рассмотрена обратная задача идентификации свойств неоднородной круглой пластины в рамках модели Тимошенко. Процедура идентификации основана на анализе акустического отклика в некоторой точке пластины в заданном наборе частот. Колебания возбуждаются приложенной к верхней грани пластины равномерно распределенной нагрузкой. Пластина считается жестко защемленной по контуру. На основании общих уравнений колебаний пластины Тимошенко (для произвольных криволинейных координат) сформулированы уравнения колебаний симметричной круглой пластины и граничные условия в обезрамеренном виде. Для решения прямой задачи использовался метод Галеркина, с помощью которого проведено сравнение значений функций прогиба для моделей Тимошенко и Кирхгофа–Лява для различных наборов механических и геометрических параметров. Для решения обратной задачи идентификации неоднородной функции цилиндрической жесткости разработан специальный метод решения — метод алгебраизации, который основан на разложении искомых функций по некоторым системам линейно независимых функций. После подстановки разложений в исходные уравнения колебаний обратная задача сводится к решению системы линейных уравнений относительно коэффициентов разложения функции прогиба и угла поворота нормали и последующем решении системы нелинейных уравнений относительно коэффициентов разложения функции цилиндрической жесткости. Разработанный метод проиллюстрирован набором вычислительных экспериментов по восстановлению монотонных и немонотонных функций, демонстрирующих его эффективность.
Ключевые слова:пластина, модель Тимошенко, идентификация, метод алгебраизации.