RUS  ENG
Полная версия
ЖУРНАЛЫ // Известия Саратовского университета. Новая серия. Серия: Математика. Механика. Информатика // Архив

Изв. Сарат. ун-та. Нов. сер. Сер.: Математика. Механика. Информатика, 2020, том 20, выпуск 4, страницы 527–533 (Mi isu869)

Эта публикация цитируется в 3 статьях

Научный отдел
Информатика

Analysis of closed queueing networks with batch service

[Анализ замкнутых сетей массового обслуживания с групповым обслуживанием]

E. P. Stankevich, I. E. Tananko, V. I. Dolgov

Saratov State University, 83 Astrakhanskaya St., Saratov 410012, Russia

Аннотация: Рассматривается замкнутая сеть массового обслуживания с групповым обслуживанием, групповыми переходами требований и непрерывным временем. Каждая система обслуживания сети состоит из одного прибора и очереди бесконечной длины. В соответствии с маршрутной матрицей сети между системами массового обслуживания осуществляются переходы требований одного класса. Длительности обслуживания требований приборами систем являются экспоненциально распределенными случайными величинами. Обслуживание требований в системах производится группами фиксированного размера. Если число требований, находящихся в системе обслуживания, меньше заданного размера группы, то обслуживающий прибор системы простаивает до момента прибытия в систему необходимого числа требований. Если же прибор занят обслуживанием группы требований, то вновь приходящие требования становятся в очередь системы. Выбор требований из очереди осуществляется согласно дисциплине RANDOM. После завершения обслуживания в системе каждое требование группы независимо от других требований в соответствии с маршрутной вероятностью мгновенно переходит в другую систему обслуживания. Предложен метод анализа сети обслуживания данного вида с использованием цепи Маркова с непрерывным временем. Для модельной цепи Маркова построена матрица интенсивностей переходов. Получены выражения для вычисления стационарных характеристик систем массового обслуживания рассматриваемой сети. Приведен пример численного анализа сети массового обслуживания. Полученные результаты могут быть использованы для решения задач распределения ресурсов, анализа производственных систем, систем пассажирских и грузовых перевозок, а также информационных и вычислительных систем с параллельной обработкой и передачей информации.

Ключевые слова: сети массового обслуживания, групповое обслуживание, цепи Маркова.

УДК: 519.872

Поступила в редакцию: 15.06.2019
Принята в печать: 23.07.2020

Язык публикации: английский

DOI: 10.18500/1816-9791-2020-20-4-527-533



Реферативные базы данных:


© МИАН, 2024