RUS  ENG
Полная версия
ЖУРНАЛЫ // Известия Саратовского университета. Новая серия. Серия: Математика. Механика. Информатика // Архив

Изв. Сарат. ун-та. Нов. сер. Сер.: Математика. Механика. Информатика, 2021, том 21, выпуск 1, страницы 4–14 (Mi isu870)

Научный отдел
Математика

Исследование некоторых классов почти периодических на бесконечности функций

И. А. Высоцкаяa, И. И. Струковаb

a Военный учебно-научный центр Военно-воздушных сил «Военно-воздушная академия имени профессора Н. Е. Жуковского и Ю. А. Гагарина», Россия, 394064, г. Воронеж, ул. Старых Большевиков, д. 54А
b Воронежский государственный университет, Россия, 394036, г. Воронеж, Университетская пл., д. 1

Аннотация: Статья посвящена исследованию непрерывных почти периодических на бесконечности функций, заданных на всей вещественной оси и со значениями в комплексном банаховом пространстве. Рассматриваются различные подпространства исчезающих на бесконечности функций, не обязательно стремящихся к нулю на бесконечности. Вводятся понятия медленно меняющихся и почти периодических на бесконечности функций относительно введенных подпространств. Для почти периодических на бесконечности функций (относительно подпространства) приводятся четыре различных определения. Первое определение (аппроксимационное) основано на аппроксимационной теореме. В классическом варианте, для почти периодических функций, это равномерные замыкания тригонометрических многочленов. В нашем случае коэффициентами Фурье являются медленно меняющиеся на бесконечности функции. Второе определение, являющееся аналогом определения Г. Бора почти периодической функции, основывается на понятии $\varepsilon$-периода. Третье определение соответствует критерию С. Бохнера почти периодичности функций. Четвертое определение приводится в терминах фактор-пространства. Благодаря использованию результатов теории почти периодических векторов в банаховых модулях доказывается, что все четыре определения эквивалентны. Кроме того, доказано, что введенные пространства медленно меняющихся и почти периодических на бесконечности функций относительно различных подпространств исчезающих на бесконечности функций совпадают с пространствами обычных медленно меняющихся и почти периодических на бесконечности функций соответственно. Целесообразность рассмотрения почти периодических на бесконечности функций обусловлена тем, что решения некоторых важных классов дифференциальных и разностных уравнений являются почти периодическими на бесконечности. В статье рассматриваются дифференциальные уравнения с правой частью из различных подпространств исчезающих на бесконечности функций. Получены необходимые и достаточные условия принадлежности ограниченных решений обыкновенных дифференциальных уравнений классу почти периодических на бесконечности функций, и изучено асимптотическое представление решений.

Ключевые слова: почти периодические на бесконечности функции, медленно меняющиеся на бесконечности функции, дифференциальные уравнения.

УДК: 517.98

Поступила в редакцию: 05.11.2019
Исправленный вариант: 15.01.2020

DOI: 10.18500/1816-9791-2021-21-1-4-14



Реферативные базы данных:


© МИАН, 2024