Аннотация:
Граф $G = (V ,\alpha)$ называется примитивным, если существует натуральное $k$, такое что между любой парой вершин графа $G$ существует маршрут длины $k$. В работе рассматриваются неориентированные графы с экспонентом 2. Доказывается критерий примитивности графа с экспонентом 2 и необходимое условие. Граф является примитивным с экспонентом 2 тогда и только тогда, когда его диаметр равен 1 или 2, а каждое его ребро входит в треугольник. Описывается вычислительный эксперимент по построению всех примитивных однородных графов с числом вершин до 16 и экспонентом 2, анализируются его результаты. Приводятся все однородные графы порядка 2, 3 и 4, которые являются примитивными с экспонентом 2, а для однородных графов порядка 5 определяется количество примитивных графов с экспонентом 2.