Аннотация:
Простейшей классической автоколебательной системой с двумя степенями свободы является генератор Ван дер Поля с дополнительным колебательным контуром. Для нее характерно явление затягивания частоты, обусловленное появлением бистабильности и гистерезиса. Ранее был выявлен бифуркационный механизм затягивания и бистабильности. Бифуркационный анализ был проведен для случая слабого возбуждения, когда система демонстрирует квазигармонические автоколебания. Однако остается открытым вопрос о влиянии ангармоничности, которая развивается в системе с ростом параметра возбуждения, на явление мультистабильности, на бифуркационный механизм ее формирования. Сохраняется ли эффект затягивания частоты и соответствующие бистабильные состояния в широкой области значений управляющих параметров? Происходит ли формирование новых мультистабильных состояний? Как выглядит бифуркационная структура плоскости управляющих параметров? В данной работе перечисленные вопросы исследуются на примере автоколебательной системы, состоящей из осциллятора Рэлея с дополнительным линейным осциллятором. Численное моделирование и бифуркационный анализ состояний равновесия и предельных циклов выполнены с помощью пакета программ XPPAUTO. Представлены результаты двупараметрического анализа в широкой области значений параметра возбуждения и расстройки по частотам, описаны типичные режимы автоколебаний и их бифуркации.