Аннотация:
Работа посвящена построению и исследованию модели распространения инфекции в виде системы стохастических дифференциальных уравнений, учитывающей флуктуации параметров, характеризующих процессы заражения, выздоровления и потери иммунитета. За основу взята детерминированная SIRS+V модель, в которую добавлены ланжевеновские источники квазигауссова шума. В ходе численных исследований обнаружена колебательная динамика с характерным периодом, значение которого определяется параметрами детерминированной системы. Показано, что для моделирования хода инфекционных заболеваний недостаточно знания средних значений скоростей процессов инфицирования, выздоровления и потери иммунитета, но требуется также знать интенсивности флуктуаций этих величин. Разный уровень таких флуктуаций ведет к качественно разной наблюдаемой динамике эпидемии.
Ключевые слова:
популяционная динамика, SIRS модель, стохастические системы.
УДК:
517.9:621.372
Поступила в редакцию: 19.07.2024 Исправленный вариант: 31.03.2025 Принята в печать: 27.11.2024