Аннотация:
Системы распознавания и машинного зрения уже долгое время широко задействуются во многих дисциплинах с целью автоматизации различных процессов жизнедеятельности и промышленности. Входные изображения систем оптического распознавания могут подвергаться большому количеству различных искажений, особенно в неконтролируемых или естественных условиях съемки, что приводит к непредсказуемым результатам систем распознавания, делая невозможным оценку их достоверности. По этой причине необходимо производить контроль качества входных данных систем распознавания, чему способствует современный прогресс в области оценки качества изображений. В данной работе исследуется подход к построению систем распознавания образов со встроенными модулями оценки качества входных изображений и обратной связью, для чего введены необходимые определения и построена модель описания таких систем. Работоспособность подхода иллюстрируется на примере решения задачи выбора наилучших кадров для распознавания в видеопотоке. Приводятся экспериментальные результаты с системой распознавания документов, удостоверяющих личность, показывающие значительное увеличение точности и скорости работы системы при искусственно моделируемых условиях автоматической фокусировки камеры, приводящим к размытию кадров.