Аннотация:
Рассматривается задача о восстановлении априори неизвестного управления динамической системы по результатам приближенных апостериорных наблюдений за движением этой системы. Для решения задачи предлагается использовать метод Тихонова со стабилизатором, содержащим полную вариацию управления. Это позволяет обосновать кусочно-равномерную сходимость регуляризованных аппроксимаций, что открывает возможность для численного восстановления тонкой структуры искомого решения.
Ключевые слова:управляемая система, обратная задача динамики, метод регуляризации Тихонова, полная вариация, кусочно-равномерная сходимость, субградиент.