RUS  ENG
Полная версия
ЖУРНАЛЫ // Известия высших учебных заведений. Математика // Архив

Изв. вузов. Матем., 2020, номер 5, страницы 62–73 (Mi ivm9571)

Эта публикация цитируется в 1 статье

Уточненные уравнения движения ортотропных пластин для постановки задач акустоупругости

В. Н. Паймушинabc, Т. В. Поляковаb, Н. В. Поляковаb, Р. К. Газизуллинb

a Казанский федеральный университет, ул. Кремлевская, д. 18, г. Казань, 420008, Россия
b Казанский национальный исследовательский технический университет им. А.Н. Туполева, ул. К. Маркса, д. 10, г. Казань, 420111, Россия
c Академия наук Республики Татарстан, ул. Баумана, д. 20, Казань, 420111, Россия

Аннотация: Дана постановка задачи акустоупругости на основе уточненных уравнений движения ортотропных пластин, построенных в первом приближении путем редукции трехмерных уравнений теории упругости к двумерным уравнениям теории пластин путем использования для аппроксимации поперечных касательных напряжений и напряжения поперечного обжатия тригонометрических базисных функций в направлении толщины. При этом в точках граничных (лицевых) поверхностей точно удовлетворяются статические граничные условия задачи для касательных напряжений и приближенно для поперечного нормального напряжения. Учет внутреннего рассеивания энергии в материале пластины осуществляется на основе гистерезисной модели Томпсона–Кельвина–Фойгта. Построенные уравнения при постановке задач о динамических процессах деформирования пластины в вакууме разделяются на две обособленные системы уравнений. Первой из них описываются неклассические безсдвиговые продольно-поперечные формы движения, сопровождающиеся искажением плоской формы поперечных сечений, а второй системой — поперечные изгибно-сдвиговые формы движения. Последние по качеству и содержательности практически эквивалентны аналогичным уравнениям известных вариантов уточненных теорий, но, в отличие от них, при уменьшении параметра относительной толщины приводят к решениям по классической теории пластин. Движение окружающих пластину акустических сред описывается обощенными волновыми уравнениями Гельмгольца, построенными с учетом рассеивания энергии путем введения в рассмотрение комплексной скорости звука по Скучику.

Ключевые слова: ортотропная пластина, уточненная теория, тригонометрическая функция, рассеивание энергии, модель Томпсона–Кельвина–Фойгта, продольно-поперечная форма, поперечная изгибно-сдвиговая форма, задача акустоупругости, обобщенное волновое уравнение.

УДК: 539.3

Поступила: 07.05.2019
Исправленный вариант: 07.05.2019
Принята к публикации: 19.06.2019

DOI: 10.26907/0021-3446-2020-5-62-73


 Англоязычная версия: Russian Mathematics (Izvestiya VUZ. Matematika), 2020, 64:5, 56–65

Реферативные базы данных:


© МИАН, 2024