Аннотация:
Симплектические матрицы подчинены определенным условиям, которым удовлетворяют якобиевые матрицы преобразований, сохраняющих гамильтонову форму дифференциальных уравнений. Выведена формула, параметризующая симплектические матрицы симметричными матрицами. Проведена аналогия между полученной формулой и формулой Кэли, связывающей ортогональные и антисимметричные матрицы. Показано, что ортогональные и антисимметричные матрицы при замене декартовой системы координат преобразуются по ковариантному закону. Аналогично доказана ковариантность преобразований симплектических и симметричных матриц.
Из формул Кэли и их аналога получен ряд матричных соотношений, связывающих ортогональные и симметричные матрицы, и аналогичных соотношений, связывающих симплектические и симметричные матрицы.
Ключевые слова:симплектическая и симметричная матрица, ортогональная и антисимметричная матрица, ковариантность.
УДК:512.643
Поступила: 24.03.2020 Исправленный вариант: 24.03.2020 Принята к публикации: 25.03.2020