Известия вузов. ПНД,
2019, том 27, выпуск 3,страницы 86–98(Mi ivp110)
ПРИКЛАДНЫЕ ЗАДАЧИ НЕЛИНЕЙНОЙ ТЕОРИИ КОЛЕБАНИЙ И ВОЛН
Динамика слабодиссипативной автоколебательной системы под внешним импульсным воздействием с амплитудой, полиномиально зависящей от динамической переменной
Аннотация:Тема и цель. В работе исследуется динамика осциллятора ван дер Поля под импульсным воздействием, амплитуда которого зависит нелинейным образом от динамической переменной. В качестве функций, описывающих эту зависимость, выбираются разложения функции $\cos x$ в ряд Тейлора вблизи нуля. Известно, что в случае, когда зависимость амплитуды внешнего воздействия от динамической переменной описывается квадратичным полиномом, такая система демонстрирует наличие критической точки гамильтоновского типа, а при выборе зависимости в виде $\cos x$ – стохастической паутины в консервативном пределе. Исследованные модели. Исследование проводится для исходной потоковой системы и для приближенного дискретного отображения. Результаты. Исследованы изменения устройства пространства параметров и фазового пространства при изменении вида функции внешнего воздействия. Показано, что усложнение вида функции приводит к увеличению количества седло-узловых бифуркаций, происходящих в системе при уменьшении параметра диссипации.