RUS  ENG
Полная версия
ЖУРНАЛЫ // Известия высших учебных заведений. Прикладная нелинейная динамика // Архив

Известия вузов. ПНД, 2017, том 25, выпуск 2, страницы 4–36 (Mi ivp37)

Эта публикация цитируется в 2 статьях

ОБЗОРЫ АКТУАЛЬНЫХ ПРОБЛЕМ НЕЛИНЕЙНОЙ ДИНАМИКИ

Математическая теория динамического хаоса и её приложения: Обзор. Часть 1. Псевдогиперболические аттракторы

А. С. Гонченкоa, С. В. Гонченкоa, А. О. Казаковab, А. Д. Козловa

a Нижегородский государственный университет им. Н. И. Лобачевского
b Государственный университет – Высшая школа экономики (Нижегородский филиал)

Аннотация: В работе рассматриваются актуальные вопросы современной математической теории динамического хаоса и ее приложений. В настоящее время принято считать, что в конечномерных гладких динамических системах могут наблюдаться три принципиально различных формы хаоса. Это диссипативный хаос, математическим образом которого является странный аттрактор; консервативный хаос, для которого все фазовое пространство является большим «хаотическим морем» с беспорядочно расположенными внутри него эллиптическими островами; и смешанная динамика, характеризующаяся принципиальной неотделимостью в фазовом пространстве аттракторов, репеллеров и консервативного поведения траекторий.
В настоящей работе (открывающей цикл из трех статей) представлены элементы теории псевдогиперболических аттракторов многомерных отображений. Такие аттракторы, также как и гиперболические, являются настоящими странными аттракторами, однако, допускают существование гомоклинических касаний. Мы приводим математическое определение псевдогиперболического аттрактора для случая многомерных отображений, из которого выводим необходимые условия для его существования в трехмерном случае, формулируемые с помощью показателей Ляпунова. Мы также даем описание феноменологических сценариев возникновения псевдогиперболических аттракторов различных типов в однопараметрических семействах трехмерных диффеоморфизмов, предлагаем новые методы исследования таких аттракторов (в частности, метод карт седел и модифицированный метод диаграмм Ляпунова), а в качестве примеров рассматриваем ориентируемые и неориентируемые трехмерные обобщенные отображения Эно.
Во второй части будет дан обзор теории спиральных аттрактров как важного и часто встречающегося в приложениях типа диссипативного хаоса. Третья часть будет посвящена смешанной динамике – нового типа хаоса, который характерен, в частности, для обратимых (реверсивных) систем, то есть систем инвариантных относительно некоторых замен координат и обращения времени. Хорошо известно, что такие системы встречаются во многих задачах механики, электродинамики и других областей естествознания.

Ключевые слова: Странный аттрактор, псевдогиперболичность, гомоклиническое касание, дискретный аттрактор Лоренца, трехмерное обобщенное отображение Эно.

УДК: 517.925 + 517.93

Поступила в редакцию: 22.02.2017



© МИАН, 2024