RUS  ENG
Полная версия
ЖУРНАЛЫ // Известия высших учебных заведений. Прикладная нелинейная динамика // Архив

Известия вузов. ПНД, 2019, том 27, выпуск 1, страницы 53–62 (Mi ivp4)

Эта публикация цитируется в 2 статьях

ПРИКЛАДНЫЕ ЗАДАЧИ НЕЛИНЕЙНОЙ ТЕОРИИ КОЛЕБАНИЙ И ВОЛН

К вопросу учета силы сопротивления в шарнирной точке крепления физического маятника и ее влияние на динамику движения

С. О. Гладков, С. Б. Богданова

Московский авиационный институт (национальный исследовательский университет)

Аннотация: Тема. Работа посвящена анализу динамики сложной системы: шарнирный механизм плюс физический маятник, в которой найдено дифференциальное уравнение, описывающее ее нелинейное поведение. Цель. Анализ нелинейных колебаний сложной динамической системы, представляющей из себя шарнир, стержень и шар, скрепленный единым образом. Предполагается получить дифференциальное уравнение движения маятника с учетом трения в шарнире и при учете сопротивления континуума. Метод. Метод решения задачи основан на законе сохранения энергии с учетом диссипации энергии как в шарнире, так и при движении скрепленных стержня и шара в вязкой среде. Предполагается использование определения диссипативных функций в вязкой среде, которые учитывают неоднородное распределение скорости вблизи поверхности стержня и шара. Результаты. Строго аналитически показано, что на динамику рассматриваемой системы (шарнир плюс стержень плюс шар) очень существенно влияют потери энергии в шарнире, приводящие к сильному уменьшению времени затухания при колебательном движении, которое носит существенно нелинейный характер, подробно описанный в статье. Численное решение найденного нелинейного динамического уравнения, проиллюстрированное на рисунках, указывает на сильно неоднородные осцилляции обобщенной координаты, в качестве которой был выбран угол отклонения маятника от вертикальной оси. Обсуждение. Благодаря предложенному в работе методу вывода дифференциальных уравнений движения сложных динамических систем, который заключается в суммировании выражений для диссипативной функции и производной по времени от полной энергии системы, получено исследуемое в статье уравнение. Подобный подход позволяет выводить любые дифференциальные уравнения (системы уравнений) с учетом диссипации. На примере исследуемой нами динамической системы продемонстрировано, как «работает» этот метод. Подобный алгоритм упрощает анализ вывода уравнений и сводит к минимуму возможность аналитических ошибок.

Ключевые слова: сухое трение, вязкое трение, диссипативная функция, закон сохранения энергии.

УДК: 530.182

Поступила в редакцию: 14.03.2018
Принята в печать: 19.09.2018

DOI: 10.18500/0869-6632-2019-27-1-53-62



Реферативные базы данных:


© МИАН, 2024