Аннотация:Цель настоящего исследования - разработка методики реконструкции уравнений системы фазовой автоподстройки частоты, находящейся под периодическим внешним воздействием, по скалярному временному ряду одной переменной. Методы. Вместо исходной модели реконструируется модель, интегрированная по времени, что позволяет существенно снизить чувствительность метода к шумам наблюдения, поскольку не требуется оценивать вторую производную наблюдаемой численно. Внешнее периодическое воздействие аппроксимируется тригонометрическим полиномом от времени, интеграл от которого также представляет собою тригонометрический полином. Допущение о непрерывности неизвестной нелинейной функции используется для построения целевой функции и оптимизации. Результаты. Показано, что предложенный подход даёт существенное преимущество над ранее разработанным подходом к реконструкции неинтегрированных уравнений, позволяя добиться приемлемых оценок параметров при измерительном шуме порядка 10% от среднеквадратичного отклонения сигнала даже при наличии внешнего воздействия. Заключение. Описанный подход существенно расширяет возможности реконструкции систем фазовой автоподстройки частоты, позволяя реконструировать системы под произвольным периодическим воздействием и при этом существенно увеличивая устойчивость к шуму.
Ключевые слова:
реконструкция, система фазовой автоподстройки частоты, периодическое внешнее воздействие.