Аннотация:Цель работы заключается в детальном изучении аттракторов сети Хопфилда и бассейнов их притяжения в зависимости от параметров системы - размера сети и числа запомненных образов. Для характеристики бассейнов притяжения аттракторов использовался метод вычисления порога устойчивости - минимального расстояния от аттрактора до границы его бассейна притяжения. Для полезных аттракторов данная величина соответствует минимальному искажению запомненного образа, после которого система не в состоянии его распознать. В результате исследования показано, что зависимость среднего порога устойчивости полезных аттракторов от числа запомненных образов может быть немонотонной, за счет чего устойчивость сети может возрастать при запоминании новых образов. Анализ порогов устойчивости позволил оценить максимальное число образов, которые может хранить сеть без фатальных ошибок в их распознавании. При этом порог устойчивости полезных аттракторов оказывается близким к минимально возможному, то есть к единице. В Заключении работы сделан вывод о том, что вычисление порогов устойчивости дает важную информацию о бассейнах притяжения аттракторов сети.