Аннотация:Цель статьи - проиллюстрировать генезис, смысл и значимость функционального уравнения Шрёдера, введенного в теории итераций рациональных функций, для теории детерминированного хаоса при аналитическом вычислении точных траекторных решений, инвариантных плотностей и показателей Ляпунова одномерных хаотических отображений. Демонстрируется метод решения функционального уравнения Шрёдера для различных исходных отображений посредством перехода к топологически сопряженным отображениям, для которых нахождение точного траекторного решения является более простой математической процедурой. Приводятся результаты аналитического решения уравнения Шрёдера для 12 хаотических отображений различных типов и расчета соответствующих выражений для точных траекторных решений, инвариантных плотностей и показателей Ляпунова. Делается заключение о методической целесообразности формулировки и решений уравнений Шрёдера при изучении динамики одномерных хаотических отображений.