Аннотация:Цель. В статье представлен новый метод численного моделирования квазисобственных колебаний в открытых резонаторах гиротронов - мощных вакуумных генераторах электромагнитных волн миллиметрового и субмиллиметрового диапазонов. Резонатор гиротрона имеет форму слабо неоднородного полого круглого металлического волновода. Методы. Предлагаемый подход использует уравнение неоднородной струны с граничными условиями излучения для формулировки нелинейной спектральной краевой задачи, описывающей колебания в резонаторе в пренебрежении связями волн с разными радиальными индексами. С помощью линеаризации по частоте граничных условий излучения нелинейная краевая задача сводится к линейной. Для ее дискретизации используется метод конечных разностей и формулируется линейная обобщенная матричная проблема собственных значений, которая решается методом Арнольди в сочетании с обратным сдвигом собственных значений. Предложен итерационный алгоритм, позволяющий последовательно рассчитывать заданное число частот и добротностей квазисобственных мод колебаний. Результаты. Разработана программа для ЭВМ, написанная на языках Wolfram Language и Fortran, с использованием предложенных в работе алгоритмов. Представлены результаты тестовых расчетов для реальных резонаторов гиротронов, которые демонстрируют высокую точность полученных значений частот, добротностей и распределений полей квазисобственных колебаний в исследованных резонаторах. Заключение. Предложенные в статье методы, алгоритмы и созданная программа могут существенно облегчить процесс разработки гиротронов, предназначенных для различных практических применений и работающих в новых диапазонах частот. Метод итерационного уточнения граничных условий может быть обобщен на случай уравнений линейной теории гиротрона и использован для разработки новых методов анализа стартовых условий мягкого самовозбуждения в гиротронах-генераторах.
Ключевые слова:Гиротрон, открытый резонатор, высшие продольные моды, комплексные частоты, граничные условия излучения, метод конечных разностей, обобщенная матричная проблема собственных значений, метод Арнольди