Эта публикация цитируется в
2 статьях
Математика
Обратная задача определения параметров неоднородности тел, расположенных в свободном пространстве
М. Ю. Медведик,
Р. О. Евстигнеев,
Е. А. Гундарев Пензенский государственный университет, Пенза
Аннотация:
Актуальность и цели. В многочисленных областях знаний, где применимы математические методы, например в медицине, физике, астрономии и геофизике, применяются обратные задачи. Также стоит упомянуть задачи выяснения внутренней структуры всевозможных объектов с помощью их зондирования, где численные методы - порой единственный способ изучить объект изнутри и получить его внутреннюю структуру. Такое широкое применение обусловлено возможностью описания различных важных свойств исследуемых объектов и сред, таких как скорость распространения волны, плотность, диэлектрическая и магнитная проницаемость, параметры упругости, проводимость, а также местоположение и свойства неоднородностей в области недоступности. Сложно недооценить важность и актуальность исследований в таких областях, где проникновение внутрь или опасно, или слишком трудоемко, или вообще невозможно.
Материалы и методы. Используя полученные значения измерения поля во внешних точках (точках наблюдения), решается линейное интегральное уравнение первого рода и производится вычисление неоднородности по явной формуле. Интегральное уравнение решаем с помощью метода коллокации.
Результаты. Исследована обратная задача восстановления диэлектрической проницаемости неоднородного тела в свободном пространстве. Для решения исследуемой задачи используется смоделированное дифракционное поле во внешних точках, которое также можно получить экспериментальным путем. Далее исследуется восстановление внутренней структуры тела.
Выводы. Решение поставленной задачи методом, который используется в работе, позволяет найти решение с необходимой точностью и при этом работать с расчетными сетками больших размеров. Одним из главных достоинств метода является возможность выявления неоднородностей тела, где их количество более 1000.
Ключевые слова:
задача дифракции, обратная задача, неоднородность тела.
УДК:
519.634,
517.3
DOI:
10.21685/2072-3040-2018-4-5