RUS  ENG
Полная версия
ЖУРНАЛЫ // Известия высших учебных заведений. Поволжский регион. Физико-математические науки // Архив

Известия высших учебных заведений. Поволжский регион. Физико-математические науки, 2013, выпуск 4, страницы 17–28 (Mi ivpnz373)

Математика

Расслоение Вейля над тензорным произведением двух алгебр дуальных чисел

Я. В. Никитина, А. Я. Султанов

Пензенский государственный университет, Пенза

Аннотация: Актуальность и цели. Расслоения Вейля, начиная со времени их открытия в 1953 г., активно изучаются геометрами России, Японии, Чехии и других стран. Целью данной работы является построение естественных лифтов функций, 1-форм и векторных полей с базы в расслоения Вейля над тензорным произведением двух алгебр дуальных чисел. Материалы и методы. Для решения поставленных задач были использованы методы тензорной алгебры, теории линейных связностей. Результаты. Построено тензорное произведение двух алгебр дуальных чисел, получены структурные соотношения этой алгебры в специальном базисе, соотношения внешней операции умножения линейных форм на элементы тензорного произведения двух алгебр дуальных чисел, дано описание естественных лифтов функций с базы в изучаемые расслоения Вейля. Также введены естественные лифты векторных полей, структурные аффиноры для этих расслоений Вейля. Показано, как с помощью структурных аффиноров можно получить вертикальные лифты векторных полей из полного лифта векторного поля. В заключение построены естественные лифты 1-форм. Выводы. В работе приведены краткие сведения о расслоениях Вейля, естественных продолжениях функций с базы в расслоение Вейля, описаны вещественнозначные продолжения функций, векторных полей и 1-форм с базы в расслоение Вейля. Результаты. исследования могут быть использованы при изучении лифтов линейных связностей с базы в расслоение Вейля над тензорным произведением алгебр дуальных чисел.

Ключевые слова: расслоения Вейля, алгебра дуальных чисел, векторное поле, ковекторное поле, лифты функций, лифты векторных полей, лифты ковекторных полей.

УДК: 514.76



© МИАН, 2024