Аннотация:
Рассматривается управляемая динамическая система, заданная в виде линейной системы дифференциальных уравнений с периодической матрицей коэффициентов. Доказывается существование кусочно-постоянного стабилизирующего управления по всем фазовым переменным. Доказательство в существенной части опирается на критерий асимптотической устойчивости линейных систем дифференциальных уравнений с периодической матрицей. При этом используются приближенно построенные матрицы монодромии и их мультипликаторы.
Ключевые слова:непрерывно-дискретные системы, кусочно-постоянное управление, периодические коэффициенты.