Аннотация:Актуальность и цели. Работа посвящена динамике системы дифференциальных уравнений с диффузионным взаимодействием и дополнительной внутренней связью с кубической нелинейностью. Актуальность исследований такой системы обусловлена тем, что незначительное изменение коэффициента дополнительной связи позволяет получить сложные сценарии поведения устойчивых состояний равновесия. Для рассматриваемой системы были найдены критические зависимости, при которых нулевое состояние равновесия теряет свою устойчивость с появлением двух пространственно неоднородных состояний в одном случае и цикла в другом. При значениях параметров, близких к критическим, были получены асимптотические формулы для режимов, ответвляющихся от нулевого решения.
Материалы и методы. Для задачи в комплексе применялись аналитические и численные методы решения. При численном исследовании особое внимание уделялось значениям параметров, при которых нулевое решение системы дифференциальных уравнений теряет свою устойчивость.
Результаты. Были выявлены критические зависимости параметров, при которых происходят бифуркации нулевого состояния равновесия. При значениях параметров, близких к критическим, была построена нормальная форма и на ее основе были определены условия появления неоднородных состояний равновесия в одном случае и цикла - в другом.
Выводы. Полученные результаты могут быть использованы при решении задач численного моделирования некоторых биофизических процессов. Вызывает также интерес распространение этих результатов и на другие системы дифференциальных уравнений с дополнительной внутренней связью.