Аннотация:
Рассматриваются вопросы, связанные с асимптотическим поведением решений неавтономной дискретной системы третьего порядка типа Лотки - Вольтерра. Данная система описывает течение инфекционного заболевания в разнородной группе людей, состоящей из трех популяций. На основе новых методов теории предельных уравнений и предельных функций Ляпунова получены условия асимптотической устойчивости, которые являются условиями полного выздоровления всех популяций. Представленная методика позволяет исследовать асимптотическую устойчивость систем Лотки - Вольтерра любой конечной размерности. Рассмотрены дополнительные примеры, показывающие, что полученные на основе вырожденной функции Ляпунова условия асимптотической устойчивости являются не только достаточными, но и необходимыми с точки зрения классических условий устойчивости по линейному приближению.
Ключевые слова:неавтономная дискретная система типа Лотки - Вольтерра, предельные уравнения, асимптотическая устойчивость, развитие прямого метода Ляпунова.