RUS  ENG
Полная версия
ЖУРНАЛЫ // Известия высших учебных заведений. Поволжский регион. Физико-математические науки // Архив

Известия высших учебных заведений. Поволжский регион. Физико-математические науки, 2024, выпуск 1, страницы 76–95 (Mi ivpnz783)

Математика

Применение непрерывного метода решения операторных уравнений к приближенному решению амплитудно-фазовой проблемы

И. В. Бойков, А. А. Пивкина

Пензенский государственный университет, Пенза

Аннотация: Актуальность и цели. Рассматриваются приближенные методы решения фазовой проблемы для одномерных и двумерных сигналов, а также случаи непрерывных и дискретных сигналов. Решение фазовой проблемы состоит из двух этапов. На первом этапе по известной амплитуде спектра восстанавливается исходный сигнал. На втором этапе вычисляется преобразование Фурье восстановленного сигнала и приближенно вычисляется фаза спектра сигнала. Материалы и методы. Построение и обоснование вычислительной схемы базируется на непрерывном методе решения нелинейных операторных уравнений, основанном на теории устойчивости решений систем обыкновенных дифференциальных уравнений. Метод устойчив при возмущениях параметров математической модели и при решении нелинейных операторных уравнений, не требует обратимости производных Гато (или Фреше) нелинейных операторов. Результаты и выводы. Для восстановления исходного сигнала предложены сплайн-коллокационные схемы со сплайнами нулевого и первого порядков. Вычислительные схемы реализуются непрерывным методом решения нелинейных операторных уравнений.

Ключевые слова: амплитудно-фазовая проблема, некорректные задачи, непрерывный операторный метод, численные методы

УДК: 519.64

DOI: 10.21685/2072-3040-2024-1-7



© МИАН, 2024